
Grasping the Airwaves with a Robotic Wireless Access Point

Emerson Sie
sie2@i1linois.edu

Kiran Ramnath
kiranr2@illinois.edu

Kuan-Ying Lee
kylee5@illinois.edu

1. Introduction
Imagine a robotic wireless access point (AP) that can

move within the environment in order to maximize the link
quality between itself and user devices. Indeed, the ben-
efits of moving WiFi APs within indoor environments has
been explored previously [11, 12] where it was found that
even horizontal, centimeter-scale mobility along the ground
within a 2×2 sq. foot region can result in a noticeable SNR
gain of 8 dB for user devices on average across a wide range
of indoor settings.

The key challenge towards creating such an AP lies in
the non-intuitive and seemingly unpredictable properties of
indoor wireless channels. Due to phenomena such as multi-
path propagation and shadowing by obstacles, it is not nec-
essarily the case that moving closer to the AP or achieving
direct line-of-sight with the AP would yield a better chan-
nel. Furthermore, due to noise and perhaps transient inter-
ferences within the environment, there is not even a guar-
antee that the channel at a fixed position will remain sta-
tionary. The question then becomes one of planning - how
should the robotic AP navigate through such a seemingly
unreliable landscape?

Inspired by the recent proliferation of low-cost high-DoF
personal robots for home environments [5, 14], the suc-
cess of deep end-to-end policy learning approaches from
high-dimensional observations for said robots [15], hard-
ware advances making fast inference practical on embed-
ded devices [3], as well as software patches making high-
resolution wireless channel state information (CSI) accessi-
ble on modern commodity wireless chipsets [13], we con-
sider various data-driven approaches to solving this prob-
lem. In particular, we want to solve the problem of creating
a robotic wireless AP that adaptively learns the characteris-
tics of its environment from interacting with it so that it can
serve its clients better.

2. Approach
2.1. Assumptions

Environment. We assume a mostly planar indoor
environment. In particular, an indoor environment that
can be adequately represented by a 2D floor plan, such as

Figure 1. Robotic AP assembly. Note the Raspberry Pi 4 affixed
onto the end-effector.

a single floor of an office building or an apartment. Our
autonomous agent, a robotic AP, is fixed at some suitably
chosen position in the environment and configured at a
particular channel and bandwidth on some version of WiFi
(for example, 802.11ac).

Clients. A set of user devices connected to the robotic
AP are distributed within the environment. We can reason-
ably expect the spatial distribution of these devices to be
sparse, as we would expect them to be at specific locations
of interest (office desk, living room table, bedside table,
etc) rather than uniformly distributed in the environment.

Interferences and Noise. We consider some number of
latent interferers or noise sources within or adjacent to the
environment which we have limited control over. These
interferers can be adjacent APs within the environment (for
example on different floors or nearby houses) occupying the
same spectrum as our robotic AP and located within carrier
sensing range, the client devices connected to the said
interfering AP, moving humans within the environment,
and so forth.

Mobility. We assume mobility of clients or interferers
only on coarse-grained time scales and that for the major-
ity of the time, devices can be assumed to be mostly fixed
within the environment. This is a reasonable assumption,
since we would expect users to only move their devices
intermittently rather than continuously in indoor settings.
This encompasses cases such as when users move their lap-
top from the living room to the dining table where it re-
mains stationary, or when they move a wireless appliance

1



like a video game console from one room to another where
it likewise remains fixed. For the robotic AP, we consider
the regime of tethered mobility as defined in [11]. That is,
the robotic AP is mostly confined to a small region but is
free to move within it otherwise. This is so that there is
enough flexibility to rectify multipath and shadowing ef-
fects, yet remain practical for crowded indoor spaces.

2.2. Problem Formulation

Environment State. We identify the relevant factors
in the environment for our problem by conceptualizing the
space of environment states as S = SAP × SC × SI .

• SAP is the robotic AP’s configuration space or
workspace. Due to our focus on tethered mobility
this is largely dominated by the space of possible end-
effector poses.

• SC is the space of possible configurations of the user
devices in the environment. In particular, this encom-
passes their possible positions and orientation within
the environment as well as whether they are currently
active or dormant.

• SI is similar to SD, but with interferers and noise
sources within the environment instead of user devices.

Observations. We consider the agent’s observation of
the environmental state at time t as ot = (Tt, Ht).

• Tt ∈ RD represents the robotic AP’s estimation of its
own pose at time t, which we assume hasD degrees of
freedom. This value is an estimate of the robotic AP’s
true pose due to sensor and actuation error within the
motors of the robotic AP.

• Ht ∈ CC×N×M×K is a tensor representing the mea-
sured channel from each client device at the robotic
AP’s receiver. Following the convention in [16], C
represents the number of user devices that the robotic
AP serves, N is the number of antennas at the robotic
AP’s receiver, M is the number of antennas used at
the transmitter, and K is the number of subcarriers in
the wireless channel which depends on the configured
bandwidth of the AP. The observed channel from each
user device features ambient noise and various interfer-
ences from the environment, and thus can be viewed as
an estimation of the true underlying channel.

Channel Quality. The goal of the robotic AP should
be threefold. First, it should maximize the channel qual-
ity to clients as measured at its own receiver. Secondly, it
should minimize the effect of the latent interferers and noise
sources within the environment. Thirdly, it should achieve

Figure 2. Example 40MHz CSI vector obtained from a single
frame, where the user device was placed adjacent to the AP. Note
that the channel experiences deep fading at around subcarrier 32.

Figure 3. Variation of the 40MHz CSI to one client device for 4
poses obtained by varying the end-effector roll from −π/2 to π/2.

some notion of fairness towards each client. Hence, we re-
quire a metric Q : CC×N×M×K → R to rate the quality of
an observed channel Ht.

Since OFDM coded frames share the same modulation
scheme across all subcarriers, it can be argued that when
significant SNR variation occurs across subcarriers in a
wideband OFDM channel due to frequency-selective fad-
ing as in Figure 2, the effective SNR is bottlenecked by the
lower SNR subcarriers [10]. This suggests that subcarri-
ers with lower SNR should have a larger contribution to the
channel quality. We thus consider two metrics - the first is
obtained by simply summing the magnitude of the channel
coefficient at each subcarrier, whereas the other is obtained
by taking the minimum.

To mediate the effects of noise within the environment,
we can use the standard additive white Gaussian assumption
which asserts the noise is zero-mean and stationary. This
means we can reasonably expect to get a good estimate of
the true underlying channel by time averaging across many
samples.

As far as fairness is considered, we can safely assume
that each user device should be served equally, as is stan-
dard practice in system design.

Bringing the above discussion together, and using a

2



SISO-only system (N = M = 1) as an example so that
Ht ∈ CC×K for simplicity, this leads us to the following
instantaneous quality metrics before time-averaging.

Q(Ht) =
1

CK

C∑
c=1

K∑
k=1

‖Ht,c,k‖ (1)

Qmin(Ht) =
1

C

C∑
c=1

K
min
k=1
‖Ht,c,k‖ (2)

Task Setup. We consider our robotic AP as an agent in
an episodic environment. The beginning of each episode
is triggered when the observed channel at the robotic AP
changes significantly as a result of a change in environmen-
tal state that is extrinsic to the robotic AP. For example,
this state change can be caused by either the user devices
shifting, devices turning on or off, intereferers moving away
from the range of the robotic AP, and so on.

At each time t within the episode, the robotic AP
receives observations of the environmental state ot, and
must choose some action at. The objective is to learn a
policy π(at|ot) that guides the robotic AP to some optimal
pose, where it terminates the episode and remains fixed
until the beginning of the next episode. Note that it would
not be necessary to run the policy perpetually given our
assumption that the environmental state is not constantly
changing, but only changing at coarse-grained time scales.

2.3. WiFi Regrasping

Our key insight is that given a fixed position of a
client, the agent can observe whether a given action leads
to a better or worse channel quality. We can use this
self-supervision, combined with the idea of war-driving
(sampling the channel quality at certain carefully selected
points within in the environment) to generate a dataset to
train an action-conditional model of the environment. We
can then use this model as a basis for the policy for that
environment. Thus, we consider using the approach as
outlined in [8, 17]. That is, we treat the problem as some
form of a model-based WiFi regrasping task.

Dataset Generation. To generate the dataset, we iden-
tify several broad regions of interest within the environment
(for example, desk, living room table, bedroom, etc). For
each region of interest, we sample some number of loca-
tions within the region of interest, each of which forms
a data point in our dataset. Each of these regions of in-
terest can be viewed somewhat analogously to a distinct
object in a grasping task. Extending the same analogy,
this means that locations within the same region of interest
can be viewed somewhat analogously to the orientations or

views of the same object when it is presented to the grasping
agent.

For each of these locations, we collect tuples of expe-
rience of the form (ot, at, ot+1), where at is a randomly
sampled action from a standard Gaussian distribution,
scaled by joint-specific multipliers. We ensure that the
action is not too large and does not drive the robot to an
invalid configuration. We compare the difference between
the channel quality before and after executing the random
action in order to assign the reward of executing the ac-
tion, rt. A positive reward implies the grasp was successful.

Model Architecture. We train a model fREGRASP
to predict whether a given action at a certain state
leads to a better outcome for a single client. Formally
fREGRASP(Tt, Ht,c, at) ∈ {0, 1} represents the probability
whether there will be an increase in channel quality to-
wards a client c given that the current pose is Tt, the current
observed channel quality to said client is Ht,c, and we take
the action at. We parameterize the model as a deep neural
network capped with a sigmoid unit, whose architecture is
shown in Figure 4.

Regrasping with Stochastic Search. To evaluate the
learned model fREGRASP, we first place clients at a subset of
the test locations. To mark the beginning of an episode, we
first reset the robot arm to go to the home position. Running
the policy for each step within the episode entails choosing
the action that maximizes the expected increase in channel
quality to all clients. In other words,

at = argmax
a

C∑
c=1

fREGRASP(Tt, Ht,c, a) (3)

In practice, in order to choose at we sample a set of random-
ized actions (using the same distribution and constraints
that were used within the training phase) rather than ex-
haustively searching through the entire action space. The
episode is terminated when none of the sampled actions lead
to an improved quality channel according to the model (see
Algorithm 1).

3. Results
3.1. Experimental Setup

In our experiments we use the LoCoBot [5] with either
a Raspberry Pi 4 [6] or Nexus 6P phone fixed to its end-
effector to emulate the robotic AP.

The LoCoBot features a mobile Kobuki base [4] and a
5-DoF WidowX 200 Mobile Robot Arm [7] with a maxi-
mum payload of 200g. To manipulate the robot, we use the
PyRobot [18] library.

Both the Nexus 6P and the Raspberry Pi 4 features
Broadcom wireless cards. In particular, they feature the

3



Figure 4. The action-conditioned WiFi grasper model architecture.

Algorithm 1: Stochastic Greedy Search using WiFi
Regrasper

for 1 : n do
Initialize candidate-action set S = {};
while |S| < m do

a = SAMPLE();
if VALID(a) then

S ← S ∪ a;
end

end
Obtain grasp success probability
p(a) = fREGRASP(ot, a) ∀a ∈ S;

if @ p(a) ≥ 0.5 then
EXIT;

else
b = argmaxa∈S p(a);
Command action b on end-effector;

end
end

BCM4358 [2] and BCM43455c0 [1] respectively. The
drivers of these devices can be patched using the Nexmon
project [19, 13] in order to extract CSI from its wireless in-
terface on a per-frame basis. This tool reports the real and
complex components of the CSI values with up to 14 bits of
resolution, but the unit of normalization is undocumented.

Since CSI extraction requires the wireless interface to
function in monitor mode, it cannot function as a true wire-
less AP since hostapd requires the interface to be in AP
mode. To mitigate this shortcoming we use a separate wire-
less router, an ASUS RT-AC86U, to act as the 802.11ac AP.
We place this router adjacent to the LoCoBot. The firmware
on the RT-AC86U allows us to set the channel and band-
width of the wireless network. In our experiments, we use

channel 100 and a bandwidth of 40MHz unless otherwise
noted.

The client devices used are Raspberry Pis scattered
throughout the indoor environment. These Raspberry Pis
are connected to the wireless network of the RT-AC86U and
periodically generate frames at a fixed rate using the ping
utility. The Raspberry Pi or Nexus phone at the LoCoBot
can be configured to sniff frames originating from up to a
maximum of four clients simultaneously and dump the CSI
corresponding to each sniffed frame. Since both the client
devices are Raspberry Pis which only feature a single an-
tenna, we only consider SISO/SIMO channels.

3.2. Data Collection

All data was collected within a 20m × 10m apartment.
The three regions of interest chosen are kitchen, bed,
and desk, all of which are roughly equidistant (around 5m
away) from where the robotic AP was placed. The bed
locations feature a direct line-of-sight (LoS) path to the
robotic AP, whereas both the desk and kitchen loca-
tions are occluded due to being in a different room. Within
each region, we sample 4 uniformly spaced client locations
roughly a meter apart. For each client location, we col-
lect 1000 agent-environment interactions. When sampling
the channel, we time-average over a 100 frames, which the
clients send at a rate of 20 Hz.

There are some caveats to keep in mind. First, due to
accumulated actuation error from the weight of the monitor
device placed on the end effector of the LoCoBot arm, it
was necessary to reset the arm to the home position around
every 10 interactions. Secondly, due to the tendency of the
end effector to collide with the ground when the first joint of
the arm is enabled, we do not use the first joint of the arm.
That is, we restrict the range of motion of the arm to that of
a 4-DoF arm. Thirdly, due to the presence and movement of
human occupants in the environment, the data is expected to

4



Table 1. Regrasping model accuracy (mean ± stdev for K = 3)

Setting Training Accuracy Validation Accuracy

All combined 73.18± 0.002 72.85± 0.005
Bed 73.18± 0.007 71.84± 0.014
Desk 72.53± 0.011 70.30± 0.017

Kitchen 70.64± 0.008 68.06± 0.016

be somewhat noisy.
In total, the dataset contains around 12000 interactions

and takes up around 1.3 GB of space. Since each agent-
environment interaction takes about 4 seconds for the Lo-
CoBot to enact, the total time taken to collect the dataset
was around 13 hours.

3.3. Mapping the Channel Landscape

Similar to [11], we first figure out how the channel varies
across the configuration space of the robot given a fixed
client. For each of the sets of 1000 sampled poses in the
dataset corresponding to a single client position, we com-
pute the channel quality metric at each pose and use this to
create the histograms in Figure 6 and Table 2.

Next, we keep the robotic AP static and instead vary the
position of the client device. We consider three cases. First,
we verify that the CSI remains stationary when the client
is not moving. Secondly, we consider how the CSI changes
when the client is moved from an initial spot to a nearby ad-
jacent spot about 10cm away. Third, we consider the effect
of various transient interferers and noise sources in the envi-
ronment. In our case, we consider interference from moving
humans, which is reasonable for indoor environments. The
results are shown in Figure 5.

3.4. Regrasping the Airwaves

Training. We train the model described in Fig. 4 us-
ing K-fold cross validation (K = 3). Each fold splits the
dataset into train and test sets in the ratio 3 : 1. Fully-
connected layers use ReLU activation. The inputs are fused
via late-fusion. We see that this stabilizes the training vari-
ance although it does not improve the model performance
itself. Adam optimizer with learning rate 1e− 3 trains each
network for 500 epochs. This takes less than 5 minutes on
a CPU for all three folds combined. The accuracy of the
model can be seen in Table 1. The accuracy gap between
training and validation is small, suggesting scope for using
more capacity. However, attempts at doing so in the form of
deeper networks and skip-connections or using a learning-
rate schedule did not provide any benefits.

During deployment, we set the stochastic greedy search-
depth n = 10 and size of candidate action set m = 10.

Evaluation. For simplicity during the evaluation, we
only consider the case of a single client as it would be triv-
ial but tedious to generalize to multiple clients. For each
test case, we choose a random location in a chosen region
of interest (either bed, desk, or kitchen) that does not
appear in the dataset and run the stochastic search policy
induced by our trained model (Algorithm 1).

For each test case, we compare the quality of the final
channel at the end of each episode with the initial channel
quality at the robotic AP’s home position. We summarize
the results in Table 3. Additionally, we compare the ter-
minal channel qualities at the end of each episode with the
distribution of attainable channel qualities for each region
as shown in Figure 6 and Table 2. The results of this are
shown in Table 4.

4. Discussion

4.1. How Useful are Channel-Derived Features?

Channel Sensing. One of the striking features of our
agent is that it does not use any features other than the
channel characteristics to each client to infer what actions
should be performed at any given moment. That is, the
agent does not know or even attempt to estimate the states
of the clients or of the interferers within the environment. In
order for this to be feasible, it is necessary that the channel
contains meaningful semantic information about the envi-
ronment that the agent can use to achieve its goal.

Unlike visual features commonly used in computer vi-
sion which are based on the visible part of the electromag-
netic spectrum, humans do not have an intuitive understand-
ing of the propagation characteristics of wireless signals in
the radio spectrum. Adding to the lack of understanding of
these wireless signals is the fact that credible, high-quality
simulators of radiowave propagation, especially for indoor
environments, are sparse to non-existent. Yet, it can be ar-
gued that with the advent and rollout of 5G networks across
the world, such signals will become more and more ubiqui-
tous, both within indoor and urban environments.

Thus, it is beneficial to understand the characteristics
of such signals so that agents can leverage them as a
sensing modality beyond vision. Just as the success of
convolutional neural networks in computer vision was
informed by an understanding of the workings of human
perception (spatial locality, translational invariance, and so
on), it is conceivable that a similar level of understanding
of the idiosyncrasies of wireless signals will lead to novel
and interesting model architectures for such signals.

Sensitivity to Orientation. As is shown in Figure 5, the
measured channel is sensitive even to the mere turning of
the end-effector. This confirms the notion that the channel
state in indoor environments is highly sensitive to not

5



Figure 5. Variation of the channel state vs. time under three different scenarios. (Top) When the client device is completely stationary, the
CSI remains stable over time. (Middle) When the client is moved to an adjacent spot, the channel is momentarily perturbed before again
becoming stationary. (Bottom) In this trial, a human walks forwards and backwards once between the client device and the robotic AP
while both are held static. The forward and backward pass is clearly visible in the variation of the CSI.

Table 2. Distribution of channel quality across the configuration space for each fixed client position.

Metric
Bed Desk Kitchen

0 1 2 3 0 1 2 3 0 1 2 3

Q
Mean 590.67 576.94 580.34 566.75 565.42 602.87 623.59 595.00 573.09 585.81 575.93 579.48
Stdev 55.60 54.51 56.00 58.10 61.87 54.07 56.96 57.24 54.50 54.23 58.62 56.52

Qmin
Mean 234.23 184.50 207.95 154.20 174.78 219.28 246.45 213.45 97.23 132.59 137.50 102.85
Stdev 74.37 90.39 76.72 100.39 84.97 70.97 66.29 70.56 95.75 100.70 102.83 98.77

just centimeter scale lateral motion, but rotational motion
as well. In our context, this means that an agent can be
reasonably assured that a significant change in the channel
implies that either motion of the client or the agent itself
has taken place.

Stability of Channel Features. In order to utilize the
channel for inference, it is necessary for it to have stable
features that do not vary inexplicably.

As is shown in the top part of Figure 5, when neither
the robotic AP nor the client device is moving, the chan-
nel remains stationary. This is crucial since an agent that

builds its state representation of the environment based on
the channel can develop a sense of object permanence. In
particular, if a client is fixed in the environment and the
agent observes the channel to the client, if the agent returns
to the same configuration previously, it can expect to detect
the same channel.

In the middle part of the figure, we consider how the
channel varies when motion is in play. In particular, we are
interested in whether after either the client or agent settles
after a brief period of motion, we can expect the channel
to resume its stationary properties as discussed previously.
The figure confirms this, as the period of motion can be

6



Figure 6. The distribution of channel quality over randomly sampled poses in the robotic AP’s configuration space. (Top) Inter-regional
distribution. (Bottom) Intra-regional distribution for a chosen region (bed). (Left) Using metric Q. (Right) Using metric Qmin.

Table 3. Regrasping trials for 5 random locations in each region
that are not inside the dataset.

Test Case Qinit Qterm ∆Q # Iterations

Bed

1 539.71 665.50 +125.79 1
2 529.89 633.17 +103.18 2
3 526.66 618.84 +92.18 1
4 548.56 625.31 +76.75 3
5 525.34 653.60 +128.26 1
Average +105.232 1.6

Desk

1 542.02 606.89 +64.87 2
2 534.97 676.39 +141.42 1
3 520.97 661.84 +140.87 1
4 549.32 660.49 +111.17 1
5 569.19 694.40 +125.21 3
Average +116.71 1.6

Kitchen

1 525.92 651.35 +125.43 3
2 550.06 669.20 +119.14 2
3 505.29 635.98 +130.69 4
4 464.89 621.54 +156.65 1
5 571.56 624.97 +53.41 2
Average +111.41 2.2

clearly discerned to be in the middle of the time interval.
Lastly, we consider how the channel is affected by tran-

Table 4. Optimality of the pose at episode termination.

Bed Desk Kitchen

Mean Qterm Percentile 80.25% 86.4334% 85.79%

sient interferences or noise sources within the environment.
We consider a human as one such source since that is a
reasonable assumption for liveable spaces. As the figure
shows, when a human moves in between the LOS path
between the client and the agent, the channel is perturbed
momentarily before coming back to rest.

How Predictable is the Channel? Perhaps the most fa-
vorable structure that we would like the channel to have is
continuity. That is, it varies continuously with regards to
perturbations in the environmental state, i.e. small charges
in the environmental state lead to similarly small changes
in the observed channel. This would allow for topological
approaches to planning over the channel space, such as [9].

Clearly, this does not always hold due to phenomena
such as wireless shadowing, which can cause an abrupt
dropoff in channel quality due to environmental obstruc-
tions, but it is worth noting that in many cases, an assump-
tion of continuity can prove useful.

Perhaps the most compelling piece of evidence of this
assumption being useful in a local sense is illustrated in

7



Figure 6. Notice that in the right side of the figure, the
Qmin profiles across different regions differ, but the Qmin

profiles for locations in the same region have the same
shape. This observation is consistent with [20], which is
an indoor localization scheme which leverages the fact that
the multipath propagation characteristics towards adjacent
locations are somewhat similar and can be correlated using
Dynamic Time Warping (DTW). This also helps to explain
why the regrasping model trained on sampled locations
within each region is effective for test locations in the same
region.

4.2. How does the Regrasper Stack Up?

Quite remarkably, a model trained on CSI data from di-
verse locations does better than a model trained on data
from only one location (see Table 1). This suggests that
the function fREGRASP learns to generalize the behaviour of
wireless signals in an indoor environment.

On deploying it in a search-and-rank fashion, the search
always terminates with a positive change to the channel
quality within a reasonable number of steps for each test-
case (see Table 3). Given that each client interaction takes
roughly 4 seconds, this improvement in quality happens al-
most instantly. In contrast, using exhaustive search would
require commanding hundreds of actions in a naive fash-
ion, each accompanied with a delay in recording the chan-
nel state and possible accumulation of actuation errors, be-
fore finally making a decision on the best outcome. Further-
more, the speed of the regrasping approach does not com-
promise on the final optimality. In each client-location, the
final link quality ranks high when compared to the distribu-
tion observed at that location (see Table 4 and Figure 6).

4.3. What’s Missing?

DDPG. We implemented a Deep Deterministic Policy Gra-
dient (DDPG) network using codes provided at https:
//github.com/ghliu/pytorch-ddpg. It takes the
current pose along with the current CSI as input (113 di-
mension) and its goal is to predict the action (5 dimension)
for controlling the robot. It is composed of two fully con-
nected layers of size 400 and 300. We attempted normaliza-
tion on the same dataset as Regrasper Network as we found
the values of CSI have a wide range in different settings.

While we saw the training loss decreased as number of
steps increased, the model failed to predict reasonable ac-
tions in real robot testing, outputting the same action re-
gardless of the current CSI and robot position.1

MIMO. Although we had a Nexus 6P which featured 2
antennas and can thus derive a richer state representation of
the environment, its increased weight (178g) compared to
the Raspberry Pi (50g) meant that the scale of the actuation

1I guess that’s why they call it deterministic.

errors in the robot arm increased. Out of fear of doing dam-
age to the robotic arm due to it being near the maximum
load of the arm (200g), it was decided that the Raspberry Pi
would be used instead.

5. Conclusion
This work studies the use of a model-based deep network

to the problem of improving WiFi link quality to clients
in an indoor environment. Through a rigorous character-
ization of the Channel State Information (CSI), we iden-
tify and leverage this as a reliable source of state informa-
tion for approaching this problem. An action-conditioned
binary classifier deployed in a stochastic greedy search is
shown to consistently improve link quality to a client across
diverse locations. Further avenues for improvement were
identified (Section 4.3). We foresee this approach gener-
alizing well to other problems such as indoor localization.
Through this work, we hope to motivate research towards
more application-driven robot-learning use-cases.

6. Statement of Individual Contributions
Emerson:

1. Acquiring and deploying all the hardware.

2. Writing software (gym interface) to interface with low-
level hardware.

3. Wrote scripts that visualize the channel space and gen-
erate figures.

4. Wrote introduction, problem formulation, experimen-
tal setup, data collection, discussion.

Kiran:

1. Scripts for data gathering and massaging.

2. Designing and training WiFi Regrasper Network.

3. Deploying network with stochastic greedy search on
the LoCoBot.

4. Parts of final report to do with the model.

Kuan-Ying:

1. Implemented DDPG and bridged it to the framework.

References
[1] Broadcom BCM43455c0. https://www.cypress.

com/file/298786/download.
[2] Broadcom BCM4358. https://www.

broadcom.com/products/wireless/
wireless-lan-bluetooth/bcm4356.

8

https://github.com/ghliu/pytorch-ddpg
https://github.com/ghliu/pytorch-ddpg
https://www.cypress.com/file/298786/download
https://www.cypress.com/file/298786/download
https://www.broadcom.com/products/wireless/wireless-lan-bluetooth/bcm4356
https://www.broadcom.com/products/wireless/wireless-lan-bluetooth/bcm4356
https://www.broadcom.com/products/wireless/wireless-lan-bluetooth/bcm4356


[3] Jetson TX-2. https://developer.nvidia.com/
embedded/jetson-tx2.

[4] Kobuki Base. http://kobuki.yujinrobot.com/
about2/.

[5] LoCoBot - An Open Source Low Cost Robot. http://
locobot.org.

[6] Raspberry Pi 4. https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/.

[7] WidowX 200 Mobile Robot Arm. https:
//www.trossenrobotics.com/
widowx-200-robot-arm-mobile-base.aspx.

[8] Roberto Calandra, Andrew Owens, Dinesh Jayaraman,
Justin Lin, Wenzhen Yuan, Jitendra Malik, Edward H. Adel-
son, and Sergey Levine. More than a feeling: Learn-
ing to grasp and regrasp using vision and touch. CoRR,
abs/1805.11085, 2018.

[9] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural topological slam for vi-
sual navigation. In CVPR, 2020.

[10] Lara Deek, Eduard Garcia-Villegas, Elizabeth Belding,
Sung-Ju Lee, and Kevin Almeroth. A practical frame-
work for 802.11 mimo rate adaptation. Computer Networks,
83:332 – 348, 2015.

[11] Mahanth Gowda, Ashutosh Dhekne, and Romit Roy Choud-
hury. The case for robotic wireless networks. In Proceed-
ings of the 25th International Conference on World Wide
Web, WWW ’16, page 1317–1327, Republic and Canton of
Geneva, CHE, 2016. International World Wide Web Confer-
ences Steering Committee.

[12] Mahanth Gowda, Nirupam Roy, and Romit Roy Choudhury.
Infrastructure mobility: A what-if analysis. In Proceed-
ings of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, page 1–7, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[13] Francesco Gringoli, Matthias Schulz, Jakob Link, and
Matthias Hollick. Free your csi: A channel state informa-
tion extraction platform for modern wi-fi chipsets. In Pro-
ceedings of the 13th International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characteri-
zation, WiNTECH ’19, page 21–28, 2019.

[14] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Gandhi, and
Lerrel Pinto. Robot learning in homes: Improving general-
ization and reducing dataset bias. CoRR, abs/1807.07049,
2018.

[15] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
CoRR, abs/1504.00702, 2015.

[16] Yongsen Ma, Gang Zhou, and Shuangquan Wang. Wifi sens-
ing with channel state information: A survey. ACM Comput.
Surv., 52(3), June 2019.

[17] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken
Goldberg. Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp met-
rics. CoRR, abs/1703.09312, 2017.

[18] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,
Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav

Gupta. Pyrobot: An open-source robotics framework for re-
search and benchmarking. arXiv preprint arXiv:1906.08236,
2019.

[19] Matthias Schulz, Daniel Wegemer, and Matthias Hollick.
Nexmon: The c-based firmware patching framework, 2017.

[20] Jue Wang and Dina Katabi. Dude, where’s my card? rfid
positioning that works with multipath and non-line of sight.
In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, page 51–62, New York, NY,
USA, 2013. Association for Computing Machinery.

9

https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
http://kobuki.yujinrobot.com/about2/
http://kobuki.yujinrobot.com/about2/
http://locobot.org
http://locobot.org
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.trossenrobotics.com/widowx-200-robot-arm-mobile-base.aspx
https://www.trossenrobotics.com/widowx-200-robot-arm-mobile-base.aspx
https://www.trossenrobotics.com/widowx-200-robot-arm-mobile-base.aspx

